数据挖掘就是从大量数据中寻找隐含模式或规律的技术模式识别与机器学习,其有效性及可行性有哲学上的质量互变规律及当前的数据库管理技术来保证。从哲学意义上讲,数据挖掘的主要任务就在于,预测量变发展的趋势或在量变的积累导致质变的发生之前提前预知,或者解释描述当前量变发生发展的状态及规律。数据挖掘认知?发掘出数据中隐藏的模式、趋势、比较稳定的关系或规则的过程?通过自动或半自动的方式对海量数据进行处理?将发掘出的东西以易于理解的方式呈现,从而提供有价值的决策支持?它广泛涉及统计学、数据库技术、人工智能(机器学习)以及业务/行业知识等?其核心往往体现为一些对数据及相关规则进行处理的算法数据挖掘若干任务?对数据的探索式分析:基于数据可视化及交互性进行数据集理解的开放性探索,没有明确的目的?描述性模型建构:对数据集或其产生过程进行描述,形成模型,比如概率分布、分段分析、聚类分析等?预测性模型建构:基于已有数据集学习建立模型以预测未来的状态,比如分类、回归分析等?发现模式或规则:按照不断变换的条件、约束或关系,从数据集中发掘或提炼有意义的模式或规则?基于内容的检索:基于某种相似度或匹配度,在数据集中检索某类感兴趣的模式数据挖掘的一般过程?数据准备:数据的筛选、清洗、转换、整合?数据挖掘:核心步骤,对准备好的数据运行算法进行学习、发现或构造?模式/模型评估:对所发现的模式或所构造的模型进行验证评估并反馈继续优化?知识表示:将挖掘出来的模式或构造的模型以易于理解的方式呈现给用户数据挖掘常用算法这里从略。我们能为您做什么??我们能为您分析并选择问题,建立相应的数据挖掘应用;?我们有丰富的算法库作为支撑,同时也能定制编写更高效更具针对性的数据处理算法?我们拥有交互性极强的、基于svg的数据可视化技术,其图形能基于内容被搜索数据挖掘和机器学习的区别和联系,周志华有一篇很好的论述《机器学习与数据挖掘》可以帮助大家理解。数据挖掘受到很多学科领域的影响,其中数据库、机器学习、统计学无疑影响最大。简言之,对数据挖掘而言,数据库提供数据管理技术,机器学习和统计学提供数据分析技术。由于统计学往往醉心于理论的优美而忽视实际的效用,因此,统计学界提供的很多技术通常都要在机器学习界进一步研究,变成有效的机器学习算法之后才能再进入数据挖掘领域。从这个意义上说,统计学主要是通过机器学习来对数据挖掘发挥影响,而机器学习和数据库则是数据挖掘的两大支撑技术。从数据分析的角度来看,绝大多数数据挖掘技术都来自机器学习领域,但机器学习研究往往并不把海量数据作为处理对象,因此,数据挖掘要对算法进行改造,使得算法性能和空间占用达到实用的地步。同时,数据挖掘还有自身独特的内容,即关联分析。而模式识别和机器学习的关系是什么呢,传统的模式识别的方法一般分为两种:统计方法和句法方法。句法分析一般是不可学习的,而统计分析则是发展了不少机器学习的方法。也就是说,机器学习同样是给模式识别提供了数据分析技术。至于,数据挖掘和模式识别,那么从其概念上来区分吧,数据挖掘重在发现知识,模式识别重在认识事物。???????????机器学习的目的是建模隐藏的数据结构,然后做识别、预测、分类等。因此,机器学习是方法,模式识别是目的|||好问题。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。|||不错,数据挖掘其实就是模式识别的一种方法
非985 211,大学有可能成功自学机器学习吗
现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧;而这样一种技术在将来无疑是前景无限的。那么深度学习本质上又是一种什么样的技术呢?
深度学习是什么
深度学习是机器学习领域中对模式(声音、图像等等)进行建模的一种方法,它也是一种基于统计的概率模型。在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种识别便可以理解为语音识别。而类比来理解,如果说将机器学习算法类比为排序算法,那么深度学习算法便是众多排序算法当中的一种(例如冒泡排序),这种算法在某些应用场景中,会具有一定的优势。
深度学习的“深度”体现在哪里
论及深度学习中的“深度”一词,人们从感性上可能会认为,深度学习相对于传统的机器学习算法,能够做更多的事情,是一种更为“高深”的算法。而事实可能并非我们想象的那样,因为从算法输入输出的角度考虑,深度学习算法与传统的有监督机器学习算法的输入输出都是类似的,无论是最简单的Logistic Regression,还是到后来的SVM、boosting等算法,它们能够做的事情都是类似的。正如无论使用什么样的排序算法,它们的输入和预期的输出都是类似的,区别在于各种算法在不同环境下的性能不同。
那么深度学习的“深度”本质上又指的是什么呢?深度学习的学名又叫深层神经网络(Deep Neural Networks ),是从很久以前的人工神经网络(Artificial Neural Networks)模型发展而来。这种模型一般采用计算机科学中的图模型来直观的表达,而深度学习的“深度”便指的是图模型的层数以及每一层的节点数量,相对于之前的神经网络而言,有了很大程度的提升。
深度学习也有许多种不同的实现形式,根据解决问题、应用领域甚至论文作者取名创意的不同,它也有不同的名字:例如卷积神经网络(Convolutional Neural Networks)、深度置信网络(Deep Belief Networks)、受限玻尔兹曼机(Restricted Boltzmann Machines)、深度玻尔兹曼机(Deep Boltzmann Machines)、递归自动编码器(Recursive Autoencoders)、深度表达(Deep Representation)等等。不过究其本质来讲,都是类似的深度神经网络模型。
既然深度学习这样一种神经网络模型在以前就出现过了,为什么在经历过一次没落之后,到现在又重新进入人们的视线当中了呢?这是因为在十几年前的硬件条件下,对高层次多节点神经网络的建模,时间复杂度(可能以年为单位)几乎是无法接受的。在很多应用当中,实际用到的是一些深度较浅的网络,虽然这种模型在这些应用当中,取得了非常好的效果(甚至是the state of art),但由于这种时间上的不可接受性,限制了其在实际应用的推广。而到了现在,计算机硬件的水平与之前已经不能同日而语,因此神经网络这样一种模型便又进入了人们的视线当中。
“ 2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学机器学习教授Andrew Ng和在大规模计算机系统方面的世界顶尖专家Jeff Dean共同主导,用16000个CPU Core的并行计算平台训练一种称为“深层神经网络”(DNN,Deep Neural Networks) ”
从Google Brain这个项目中我们可以看到,神经网络这种模型对于计算量的要求是极其巨大的,为了保证算法实时性,需要使用大量的CPU来进行并行计算。
当然,深度学习现在备受关注的另外一个原因,当然是因为在某些场景下,这种算法模式识别的精度,超过了绝大多数目前已有的算法。而在最近,深度学习的提出者修改了其实现代码的Bug之后,这种模型识别精度又有了很大的提升。这些因素共同引起了深层神经网络模型,或者说深度学习这样一个概念的新的热潮。
深度学习的优点
为了进行某种模式的识别,通常的做法首先是以某种方式,提取这个模式中的特征。这个特征的提取方式有时候是人工设计或指定的,有时候是在给定相对较多数据的前提下,由计算机自己总结出来的。深度学习提出了一种让计算机自动学习出模式特征的方法,并将特征学习融入到了建立模型的过程中,从而减少了人为设计特征造成的不完备性。而目前以深度学习为核心的某些机器学习应用,在满足特定条件的应用场景下,已经达到了超越现有算法的识别或分类性能。
深度学习的缺点
深度学习虽然能够自动的学习模式的特征,并可以达到很好的识别精度,但这种算法工作的前提是,使用者能够提供“相当大”量级的数据。也就是说在只能提供有限数据量的应用场景下,深度学习算法便不能够对数据的规律进行无偏差的估计了,因此在识别效果上可能不如一些已有的简单算法。另外,由于深度学习中,图模型的复杂化导致了这个算法的时间复杂度急剧提升,为了保证算法的实时性,需要更高的并行编程技巧以及更好更多的硬件支持。所以,目前也只有一些经济实力比较强大的科研机构或企业,才能够用深度学习算法,来做一些比较前沿而又实用的应用。