当骨架方向不变的时候高频变压器设计,初级绕组和次级绕组沿同一个方向绕制,那么两个绕组开始的绕的那个线端是同名端,也就是相位相同 。而收线的那个端也是同名端。 高频变压器的设计步骤:第一步:确定原边匝数。;当然首先要选一款磁芯啦.设原边输入最低电压是VS,导通时间用TON表示,还要自己设定一个磁芯振幅,一般我是取0.2到0.25T,因为正激变压器是不需直流分量的,所以相比反激而言这个值可以取大些,原边匝数NP=VS*TON/AE*B,其中AE是磁芯截面积.第二步:画出原边电流波形,算出原边电流波形的效值,从而确定线径.如下图所示,因为电流波形是从副边感应过来的,其波形就是电感电流波形开关管导通的那一部分.这个电流的波形的峰值就是电感电流峰值除以匝数比,这个会算吧,于是这个电流波形的有效值=(IP*V/VS)* 根号下的〈(KRP的平方/3-KRP+1)*D>然后根据这个电流值去选线,电流密度同上.第三步:确定副边电流的波形,求出副边电流波形的有效值来.副边电流的波形就是开关管开通时候电感电流的那一部分,这个波形和原边电流的波形相似,因为原边电流的波形就是由这个感应过去的,,其有效值= IP*根号下的〈(KRP的平方/3-KRP+1)*D〉。依此去选线.第四步:确定自馈电绕组,一般其和原边同名端相反,利用磁复位放出电压感应出电压来
怎样知道高频变压器占空比调节合适?
变压器的使用在升压和降压电源中很常见,开关电源根据不同的输出要求采用不同的变压器拓扑电路,同样的电源也采用不同的变压器拓扑实现。
在所有拓扑中反激式变压器构成的升压式开关电源具有电路简单、元器件最少的优点,在小功率开关电源中经常采用。而变压器的设计需要技术人员根据一些经验参数来进行变压器的设计和绕制。会出现经验设计多于准确的参数设计,而且在高频条件下变压器的设计和制作不同于普通的工频变压器,更加需要实际经验和理论设计两者相互结合。本文结合实际设计和制作变压器的经验,提出一种工作于断续电流模式(DCM)下的反激式变压器设计方案,并给出相关参数设计方法。
怎样计算高频变压器的初级匝数?
电源高频变压器的设计方法
设计高频变压器是电源设计过程中的难点,下面以反馈式电流不连续电源高频变压器为例, 介绍一种电源高频变压器的设计方法。
设计目标:电源输入交流电压在180V~260V之间,频率为50Hz,输出电压为直流5V、14A,功率为70W,电源工作频率为30KHz。
设计步骤:
1、计算高频变压器初级峰值电流Ipp
2、求最小工作周期系数Dmin
3、计算高频变压器的初级电感值Lp
4、计算出绕组面积Aw和铁心有效面积Ae的乘积Aw*Ae,选择铁心尺寸。
5、计算空气间隙长度Lg
6、计算变压器初级线圈Np
7、计算变压器次级线圈Ns
高频变压器:整流、变压
在传统的高频变压器设计中,由于磁心材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化,高频化和高功率比已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积,提高电源输出功率比的关键因素。
作为开关电源最主要的组成部分,高频变压器相对于传统的工频变压器有以下优点:利用铁氧体材料制成的高频变压器具有转换效率高、体积小巧的特点;而传统的工频变压器工作在50Hz下,输出相同功率时需要较大的截面积而导致变压器体积庞大,不利于电源的小型化设计,而且电源转换效率也低于开关电源。
电脑使用的开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电。在这个电路中,开关管的最大电流对电源输出功率的大小有一定的限制(通常应用于300W电源的MOS管体积较大,有的电源甚至使用了耐流达到10A的开关管),而高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少,由于工作在很高的频率下,对元件质量的要求和线路的搭配有很高的要求。