二阶常系数齐次线性方程的形式为微分方程求解:y\'\'+py\'+qy=0其中p,q为常数,其特征方程为 λ^2+pλ+q=0依据判别式的符号,其通解有三种形式:
1、△=p^2-4q>0,特征方程有两个相异实根λ1,λ2,通解的形式为y(x)=C1*[e^(λ1*x)]+C2*[e^(λ2*x)];
2、△=p^2-4q=0,特征方程有重根,即λ1=λ2,通解为y(x)=(C1+C2*x)*[e^(λ1*x)];
3、△=p^2-4q<0,特征方程具有共轭复根α+-(i*β),通解为y(x)=[e^(α*x)]*(C1*cosβx+C2*sinβx)。
扩展资料
特征方程是为研究相应的数学对象而引入的一些等式,它因数学对象不同而不同,包括数列特征方程、矩阵特征方程、微分方程特征方程、积分方程特征方程等等。
阶常系数线性微分方程是形如y\'\'+py\'+qy=f(x)的微分方程,其中p,q是实常数。自由项f(x)为定义在区间I上的连续函数,即y\'\'+py\'+qy=0时,称为二阶常系数齐次线性微分方程。若函数y1和y2之比为常数,称y1和y2是线性相关的;若函数y1和y2之比不为常数,称y1和y2是线性无关的。特征方程为:λ^2+pλ+q=0,然后根据特征方程根的情况对方程求解。
参考资料百度百科-二阶常系数线性微分方程
如何求微分方程特征方程:
如 y\'\'+y\'+y=x(t) (1)
1,对齐次方程
y\'\'+y\'+y=0 (2)
作拉氏变换,
(s^2+s+1)L(y)=0
特征方程:s^2+s+1=0
2,设齐次方程通解为: y=e^(st),代入(2)
(s^2+s+1)e^(st) = 0 e^(st)不恒为0,只有:
s^2+s+1 = 0 此即特征方程。
3,解出s的两个根,s1,s2,齐次方程(2)的通解:
y=Ae^(s1t) + Be^(s2t)
再找出非齐方程(1)的一个特解y*(t),那么(1)的通解
等于:(2)的通解加上(1)的一个特解。
扩展资料:
递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。
新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列 的第1项(或前几项),且任一项 与它的前一项 (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。
有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”。
重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。
参考资料:特征方程_百度百科
微分方程,用通解公式,要详细解答过程!
解:∵微分方程为y\'-y/x=-2/x×lnx,化为y\'/x-y/x²=
-2/x²×lnx ∴有(y/x)\'=-2/x²×lnx,y/x=2/x×lnx+2/x+c
(c为任意常数),微分方程的通解为为y=2lnx+2+cx
请参考
下图为解隐式微分方程的过程
随着分析学对函数引入微分运算,表示未知函数的导数以及自变量之间的关系的方程进入数学家的视野,这就是微分方程。微分方程的形成与发展与力学、天文学、物理学等科学技术的发展密切相关。因为在现实的世界中,物质的运动及其变化规律在数学上是用函数关系来描述的,这意味着问题的解决就是要去寻求满足某些条件的函数,而这类问题就转换为微分方程的求解问题。微分方程为科学发现提供了有力工具,如:
牛顿通过使用微分方程研究天体力学和机械力学,从理论上得到行星运动规律;
天文学家亚当斯和天文学家勒维烈使用微分方程,找到了海王星。
解微分问题的基本思想类似于解代数方程,要把问题中已知函数和未知函数之间的关系找出来,进而得到包含未知函数的一个或几个方程,然后使用分析的方法去求得未知函数的表达式。
如果微分方程中出现的未知函数只含一个自变量,那么该类微分方程就是常微分方程。常微分方程的通解构成一个函数族,主要研究方程或方程组的分类及解法、解的存在性和唯一性、奇解、定性理论等等内容。
如果一个微分方程中出现多元未知函数的偏导数,那么这就是偏微分方程。偏微分方程作为一门学科产生于18世纪对振动弦问题的研究。在科学技术飞速发展过程中,更多的问题无法用只含一个自变量的函数来描述,多个变量的函数来描述才更合适。
解:微分方程为y\'-y/x=-2/x×lnx,化为
y\'/x-y/x²=-2/x²×lnx,(y/x)\'=-2/x²×lnx,
y/x=2/x×lnx+2/x+c(c为任意常数),微分方程的通解为y=2lnx+2+cx
再举个解微分方程的例子
请参考