数轴标根法(数轴标根法的步骤)

你好

数轴穿根法”又称“数轴标根法”

第一步数轴标根法:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:保证X最高次项系数为正)

例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0

【这里要注意的一点是,不能出现(b-x)这样的因式,一样要换过来,让x在前面,改变不等号】

第二步:将不等号换成等号解出所有根。

例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1

第三步:在数轴上从左到右依次标出各根。

例如:-1 1 2

第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根“上去,一上一下依次穿过各根。

第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿跟线以内的范围;如果不等号为“<”则取数轴下方,穿跟线以内的范围。

例如:

若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2

画穿根线:由右上方开始穿根。

因为不等号威“>”则取数轴上方,穿跟线以内的范围。即:-1<x<1或x>2。

数轴穿根法中的\" 奇过偶不过\" 的意思

穿针引线法,标根分区法.或者叫穿根法,呵呵,是解高次不等式的一个好技巧,

第一:最高次项系数化为正数.保证因式分解后各因式中x的系数为正.

第二:将这若干个根按从小到大的顺序标在数轴上,注意是空心点(不能取到)还是实心点(可以取到).

第三:按照从右至左,从上至下的顺序画一条曲线,穿过这些点,注意\"奇过偶不过\"(奇次方的点过,偶次方的点不过).

第四:根据第一步整理的不等式的不等号的方向来写出解集,大于号取在数轴上方的区间,小于号取在数轴下方的区间.

高中数学里穿针引线发怎么用?

第一步

数轴标根法(数轴标根法的步骤)

数轴标根法(数轴标根法的步骤)

通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证最高次数项的系数为正数)

数轴标根法(数轴标根法的步骤)

数轴标根法(数轴标根法的步骤)

例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0

第二步

将不等号换成等号解出所有根。

例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1

第三步

在数轴上从左到右按照大小依次标出各根。

例如:-1 1 2

奇穿偶不穿

奇穿偶不穿

第四步

画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。

第五步

观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”,则取数轴下方,穿根线以内的范围。

例如:

若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2

画穿根线:由右上方开始穿根。

因为不等号为“>”则取数轴上方,穿根线以内的范围。即:-1<x<1或x>2。

奇穿偶不穿:即假如有两个解都是同一个数字。这个数字要按照两个数字穿。如(x-1)^2=0 两个解都是1 ,那么穿的时候不要透过1。

奇穿偶不穿是指因式分解后X的指数次方如果是奇数可以用穿根法偶数就不能用一定要化简成奇数次方。

可以简单记为秘籍口诀:或“自上而下,从右到左,奇穿偶不穿”(也可以这样记忆:“自上而下,自右而左,奇穿偶回” 或“奇穿偶连”)。

扩展资料:

注意事项:

运用序轴标根法解不等式时,常犯以下的错误:

问题一

出现形如(a-x)的一次因式时,勿匆忙地“穿针引线”。

例1 解不等式x(3-x)(x+1)(x-2)>0。

解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或0<x<2或x>3}。

事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是:

【解】原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,由图1,原不等式的解集为{x|-1<x<0或2<x<3}。

问题二

出现重根时,机械地“穿针引线”。

例2 解不等式(x+1)(x-1)^2(x-4)^3<0

解 将三个根-1、1、4标在数轴上,

原不等式的解集为{x|x<-1或1<x<4}。

这种解法也是错误的,错在不加分析地、机械地“穿针引线”。出现几个相同的根时,所画的浪线遇到“偶次”点(即偶数个相同根所对应的点)不能过数轴,仍在数轴的同侧折回,只有遇到“奇次”点(即奇数个相同根所对应的点)才能穿过数轴,正确的解法如下:

解 将三个根-1、1、4标在数轴上,画出浪线图来穿过各根对应点,遇到x=1的点时浪线不穿过数轴,仍在数轴的同侧折回;遇到x=4的点才穿过数轴,于是,可得到不等式的解集

{x|-1<x<4且x≠1}

参考资料:

穿针引线法_百度百科

穿针引线法,是判断多项式函数以根为区间端点的各区间值符号的方法,故而也可以用来求多项式不等式的解集。

具体做法如下:

需要注意的是,多现实最高次项的系数符号,决定了曲线在根区间之外的符号,最高次项系数a为正就在最大根右边全部位于x轴上方,而且如果总次数为奇数,那么最小根左边的曲线在x轴下方;偶数的话和右边一样也在上方;系数 为负的话就和正的时候相反,这个可以作为曲线开始画的时候的起步点的判定办法。

具体例子:

它的图像如下:

这样就可确定p7(x)在各个区间的取值符号。

扩展:不光是多项式,经常也将分子分母都是多项式的分式的符号判断也化为多项式问题。比如pn(x)/qm(x),因为分式相除的符号与相乘的符号是一样的故可以通过讨论pn(x)qm(x)问题来解决,只是要注意分母有意义的问题。