有限元分析基础(有限元分析基础知识学习)

有限元分析太深了有限元分析基础,若真想从事这样的工作的话,你需要学习的课程很多。

有限元分析,不同于绘图。

有限元分析必须要有很好的理论知识。

材料力学、理论力学、高等数学是基础中的基础,然后再学习有限元分析。

真正的有限元分析,本科生做不了,一般的本科生,学不到有限元分析,这是研究生课程。

只学软件,不学理论,那你学到的只能是皮毛中的皮毛,太多的东西,根本就不明白。

是有个插件 好像是cosmosSolidWorks从09版开始,其插件COSMOSWorks改名为SolidWorks Simulation 用起来 操作比较简单 看你处理的问题啊

学好有限元需要哪些数学基础

数学物理方法:这门课主要是从具体的问题中抽象出一个数学模型,再利用数学原理,主要是微积分,建立一个积分方程,然后离散之后就是有限元编程的总方程。

高等数学:这个是每个大学生都必须的,里面的微积分、矩阵运算等等理论都是在以后的数值推导中特别需要的。

数值计算方法:求解不同的微分方程和偏微分方程需要用不同的数值方法,其精度和计算效率都是不同的。学过这门课,才知道有限元里面用哪种方法比较符合自己的情况。

以上三门是普适性的数学基础。

有限元就是个软件。你只需要怎么用软件就可以了啊。理论上你起码得知道《理论力学》

有限元法有什么特点和优势

有限元分析法是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。

有限元分析法是对于结构力学分析迅速发展起来的一种现代计算方法。它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。 有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司,其中ADINA、ABAQUS在非线性分析方面有较强的能力目前是业内最认可的两款有限元分析软件,ANSYS、MSC进入中国比较早所以在国内知名度高应用广泛。目前在多物理场耦合方面几大公司都可以做到结构、流体、热的耦合分析,但是除ADINA以外其它三个必须与别的软件搭配进行迭代分析,唯一能做到真正流固耦合的软件只有ADINA。ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。ABAQUS专注结构分析目前没有流体模块。MSC是比较老的一款软件目前更新速度比较慢。ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。(随着现代科学技术的发展,人们正在不断建造更为快速的交通工具、更大规模的建筑物、更大跨度的桥梁、更大功率的发电机组和更为精密的机械设备。这一切都要求工程师在设计阶段就能精确地预测出产品和工程的技术性能,需要对结构的静、动力强度以及温度场、流场、电磁场和渗流等技术参数进行分析计算。例如分析计算高层建筑和大跨度桥梁在地震时所受到的影响,看看是否会发生破坏性事故;分析计算核反应堆的温度场,确定传热和冷却系统是否合理;分析涡轮机叶片内的流体动力学参数,以提高其运转效率。这些都可归结为求解物理问题的控制偏微分方程式,这些问题的解析计算往往是不现实的。近年来在计算机技术和数值分析方法支持下发展起来的有限元分析(FEA,Finite Element Analysis)方法则为解决这些复杂的工程分析计算问题提供了有效的途径。在工程实践中,有限元分析软件与CAD系统的集成应用使设计水平发生了质的飞跃,主要表现在以下几个方面: 增加设计功能,减少设计成本; 缩短设计和分析的循环周期; 增加产品和工程的可靠性; 采用优化设计,降低材料的消耗或成本; 在产品制造或工程施工前预先发现潜在的问题; 模拟各种试验方案,减少试验时间和经费; 进行机械事故分析,查找事故原因。以上有西安为普仿真计算有限公司提供

有限元方法的核心思想是什么?

发现很多人对有限元的理解并不是特别深刻。有限元只是求解偏微分方程的一种数值方法而已。所以理解有限元你必须要反思你学过的数值方法,比如数值分析的时候你是如何近似一个函数的,如何近似积分,近似导数??我们会发现数值方法的核心是 空间内的一组基来近似 空间内的复杂形式。简单说就是利用 一组简单的表达式来近似任何复杂的形式。拉格朗日插值不就是采用非常简单的基函数来形成的。数值积分我们都是划归到了对多项式的积分上。。。。

有限元分析基础(有限元分析基础知识学习)

理解了数值方法的核心再理解有限元就简单多了,有限元求解的对象是偏微分方程。考虑偏微分方程,最终的解的定义域是在一个区域内的,这个区域内的解析表达式是非常困难的。这时候理所当然大家就会考虑怎么求解这个问题呢?肯定是在这个区域内找一些简单函数去近似拟合,比如利用多项式 利用周期函数等等。。。。但是在这样求解的过程中又会发现,我们在整个区域内近似是非常困难的,对于很多问题还是不是那么容易求解,试想一个形状非常不规则的区域???这时候,科学家就会萌生了能否我把整个区域的问题划分成一系列的简单区域,简单区域上问题求解是非常简单的,最终的结果把所有区域结合起来不就可以了吗? 这时候科学家又会联系到,结构力学中的杆件结构,因为在杆件结构中已经有了这样的方法。所以经过一系列的推导就有了这样分片求解问题的方法 即有限元方法。

有限元分析基础(有限元分析基础知识学习)

有限元并没有什么复杂的,楼主也不要被什么最小势能,变分原理吓住,因为这些都是在逐步完善有限元方法过程中理论的完善,最小势能,变分原理是为了建立有限元的弱形式,或许你会问 弱形式是什么呢? 举个例子,如果我们分析的微分方程式二阶的,也就是方程中含有关于自变量的二阶导数,那么我们建立的近似函数是不是也要具有二阶呢?答案是肯定的,事实证明,阶段太高是非常不利于问题求解的,那么就会思考可不可有一种等效的形式,但是阶次又是比较低的?当然有了,这就是弱形式,试想如果可以用一次函数去近似是不是非常简单呢?不得不说这是有限元方法得以这么盛行的非常重要的理论基础。

离散化和相应单元特性和收敛研究也是有限元中一个重要研究领域,总的来说,有限单元和他们组装成的总体结构主要分为:

1-D 单元 (1-D element)

杆单元 (bar element) ------ 桁架 (truss)梁单元 (beam element) ------ 框架 (frame)板单元 (plate element) ------ 壳体 (shell)

2-D单元 (2-D element) ------ 平面应力体 (plain stress) 和 平面应变体 (plain strain)

三角单元 (triangle element)四边形单元 (quadrilateral element)多边形单元 (polygonal element)

3-D 单元 (3-D element) ----- 立体结构 (3-D problem)

三角体 (tetrahedrons element)立方体单元 (hexahedrons element)多边体单元 (polyhedrons element)

 可以看到每种单元又可以提高形函数的阶数(控制点 node 数量)来提高精度。很多有限元研究也集中在这个领域。比如研究新的单元引用于结构动力反应以减小数值震荡,比如用3-D单元去模拟梁单元等等。其实理论上来说这个领域可以有无限可能,因为对精度和数值稳定的追求可以是无限的。

具体的分类和单元形状见下图