关于归结原则怎么用(归结原则)的介绍,惠州推广会在这篇文章说明,更多相关归结原则怎么用(归结原则)的内容请关注惠州seo!
1.归结原则
归结原则反映了数列极限与函数极限的关系。
把函数集线归结为数列极限的问题来处理。海涅定理是沟通函源数极限和数列极限之间的桥梁。
根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性质都可以用序列极限的性质来证明。
根据海涅定理的必要和重要条件,也可以判断一个函数的极限是否存在。因此,海涅定理在求解序列极限或函数极限时起着重要的作用。
扩展资料:根据海涅定理的充要条件,还可以判断函数极限是否存在。因此,海涅定理在求解序列极限或函数极限时起着重要的作用。
海涅定理是由德国数学家海涅提出的。利用海涅定理,人们可以把函数的极限问题转化为级数问题,所以人们又称其为泛化原理。
序列的极限和函数的极限是独立定义的,但它们是相互联系的。海涅定理深刻地揭示了变量变异的整体与局部、连续与离散之间的关系,从而在序列极限与函数极限之间架起了沟通的桥梁。
参考资料来源:百度百科-海涅定理。
2.简单叙述归结原则(海涅定理)
归结原则反映了数列极限与函数极限的关系。
把函数集线归结为数列极限的问题来处理。海涅定理是沟通函源数极限和数列极限之间的桥梁。
根据海涅定理,求函数极限则可化为求数列极限,同样求数列极限也可转化为求函数极限。因此,函数极限的所有性质都可用数列极限的有关性质来加以证明。
根据海涅定理的必要重要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
扩展资料:根据海涅定理的充分必要条件还可以判断函数极限是否存在。所以在求数列或函数极限时,海涅定理起着重要的作用。
海涅定理是德国数学家海涅(Heine)给出的,应用海涅定理人们可把函数极限问题转化(归结)成数列问题,因而人们又称它为归结原则。虽然数列极限与函数极限是分别独立定义的,但是两者是有联系的。
海涅定理深刻地揭示了变量变化的整体与部分、连续与离散之间的关系,从而给数列极限与函数极限之间架起了一座可以互相沟通的桥梁。参考资料来源:百度百科-海涅定理。